
3.3 NEWTON’S UNIVERSAL LAW OF GRAVITATION

Learning Objectives

By the end of this section, you will be able to:

Explain what determines the strength of gravity
Describe how Newton’s universal law of gravitation extends our understanding of Kepler’s laws

Newton’s laws of motion show that objects at rest will stay at rest and those in motion will continue moving
uniformly in a straight line unless acted upon by a force. Thus, it is the straight line that defines the most natural
state of motion. But the planets move in ellipses, not straight lines; therefore, some force must be bending their
paths. That force, Newton proposed, was gravity.

In Newton’s time, gravity was something associated with Earth alone. Everyday experience shows us that Earth
exerts a gravitational force upon objects at its surface. If you drop something, it accelerates toward Earth as it
falls. Newton’s insight was that Earth’s gravity might extend as far as the Moon and produce the force required
to curve the Moon’s path from a straight line and keep it in its orbit. He further hypothesized that gravity is not
limited to Earth, but that there is a general force of attraction between all material bodies. If so, the attractive
force between the Sun and each of the planets could keep them in their orbits. (This may seem part of our
everyday thinking today, but it was a remarkable insight in Newton’s time.)

Once Newton boldly hypothesized that there was a universal attraction among all bodies everywhere in
space, he had to determine the exact nature of the attraction. The precise mathematical description of that
gravitational force had to dictate that the planets move exactly as Kepler had described them to (as expressed
in Kepler’s three laws). Also, that gravitational force had to predict the correct behavior of falling bodies on
Earth, as observed by Galileo. How must the force of gravity depend on distance in order for these conditions
to be met?

The answer to this question required mathematical tools that had not yet been developed, but this did not deter
Isaac Newton, who invented what we today call calculus to deal with this problem. Eventually he was able to
conclude that the magnitude of the force of gravity must decrease with increasing distance between the Sun
and a planet (or between any two objects) in proportion to the inverse square of their separation. In other
words, if a planet were twice as far from the Sun, the force would be (1/2)2, or 1/4 as large. Put the planet three
times farther away, and the force is (1/3)2, or 1/9 as large.

Newton also concluded that the gravitational attraction between two bodies must be proportional to their
masses. The more mass an object has, the stronger the pull of its gravitational force. The gravitational attraction
between any two objects is therefore given by one of the most famous equations in all of science:

Fgravity = GM1 M2

R 2

where Fgravity is the gravitational force between two objects, M1 and M2 are the masses of the two objects, and
R is their separation. G is a constant number known as the universal gravitational constant, and the equation
itself symbolically summarizes Newton’s universal law of gravitation. With such a force and the laws of motion,
Newton was able to show mathematically that the only orbits permitted were exactly those described by
Kepler’s laws.

Newton’s universal law of gravitation works for the planets, but is it really universal? The gravitational theory
should also predict the observed acceleration of the Moon toward Earth as it orbits Earth, as well as of any
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object (say, an apple) dropped near Earth’s surface. The falling of an apple is something we can measure quite
easily, but can we use it to predict the motions of the Moon?

Recall that according to Newton’s second law, forces cause acceleration. Newton’s universal law of gravitation
says that the force acting upon (and therefore the acceleration of) an object toward Earth should be inversely
proportional to the square of its distance from the center of Earth. Objects like apples at the surface of Earth, at
a distance of one Earth-radius from the center of Earth, are observed to accelerate downward at 9.8 meters per
second per second (9.8 m/s2).

It is this force of gravity on the surface of Earth that gives us our sense of weight. Unlike your mass, which would
remain the same on any planet or moon, your weight depends on the local force of gravity. So you would weigh
less on Mars and the Moon than on Earth, even though there is no change in your mass. (Which means you
would still have to go easy on the desserts in the college cafeteria when you got back!)

The Moon is 60 Earth radii away from the center of Earth. If gravity (and the acceleration it causes) gets weaker
with distance squared, the acceleration the Moon experiences should be a lot less than for the apple. The
acceleration should be (1/60)2 = 1/3600 (or 3600 times less—about 0.00272 m/s2. This is precisely the observed
acceleration of the Moon in its orbit. (As we shall see, the Moon does not fall to Earth with this acceleration, but
falls around Earth.) Imagine the thrill Newton must have felt to realize he had discovered, and verified, a law
that holds for Earth, apples, the Moon, and, as far as he knew, everything in the universe.

Gravity is a “built-in” property of mass. Whenever there are masses in the universe, they will interact via the
force of gravitational attraction. The more mass there is, the greater the force of attraction. Here on Earth, the
largest concentration of mass is, of course, the planet we stand on, and its pull dominates the gravitational
interactions we experience. But everything with mass attracts everything else with mass anywhere in the
universe.

Newton’s law also implies that gravity never becomes zero. It quickly gets weaker with distance, but it continues

E X A M P L E  3 . 3

Calculating Weight

By what factor would a person’s weight at the surface of Earth change if Earth had its present mass but
eight times its present volume?

Solution

With eight times the volume, Earth’s radius would double. This means the gravitational force at the
surface would reduce by a factor of (1/2)2 = 1/4, so a person would weigh only one-fourth as much.

Check Your Learning

By what factor would a person’s weight at the surface of Earth change if Earth had its present size but
only one-third its present mass?

Answer:

With one-third its present mass, the gravitational force at the surface would reduce by a factor of 1/3, so
a person would weight only one-third as much.

82 Chapter 3 Orbits and Gravity

This OpenStax book is available for free at http://cnx.org/content/col11992/1.13



to act to some degree no matter how far away you get. The pull of the Sun is stronger at Mercury than at
Pluto, but it can be felt far beyond Pluto, where astronomers have good evidence that it continuously makes
enormous numbers of smaller icy bodies move around huge orbits. And the Sun’s gravitational pull joins with
the pull of billions of others stars to create the gravitational pull of our Milky Way Galaxy. That force, in turn, can
make other smaller galaxies orbit around the Milky Way, and so on.

Why is it then, you may ask, that the astronauts aboard the Space Shuttle appear to have no gravitational forces
acting on them when we see images on television of the astronauts and objects floating in the spacecraft? After
all, the astronauts in the shuttle are only a few hundred kilometers above the surface of Earth, which is not
a significant distance compared to the size of Earth, so gravity is certainly not a great deal weaker that much
farther away. The astronauts feel “weightless” (meaning that they don’t feel the gravitational force acting on
them) for the same reason that passengers in an elevator whose cable has broken or in an airplane whose
engines no longer work feel weightless: they are falling (Figure 3.9).[2]

Figure 3.9 Astronauts in Free Fall. While in space, astronauts are falling freely, so they experience “weightlessness.” Clockwise from top left:
Tracy Caldwell Dyson (NASA), Naoko Yamzaki (JAXA), Dorothy Metcalf-Lindenburger (NASA), and Stephanie Wilson (NASA). (credit: NASA)

When falling, they are in free fall and accelerate at the same rate as everything around them, including their
spacecraft or a camera with which they are taking photographs of Earth. When doing so, astronauts experience
no additional forces and therefore feel “weightless.” Unlike the falling elevator passengers, however, the
astronauts are falling around Earth, not to Earth; as a result they will continue to fall and are said to be “in orbit”
around Earth (see the next section for more about orbits).

Orbital Motion and Mass
Kepler’s laws describe the orbits of the objects whose motions are described by Newton’s laws of motion and

2 In the film Apollo 13, the scenes in which the astronauts were “weightless” were actually filmed in a falling airplane. As you might imagine,
the plane fell for only short periods before the engines engaged again.
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the law of gravity. Knowing that gravity is the force that attracts planets toward the Sun, however, allowed
Newton to rethink Kepler’s third law. Recall that Kepler had found a relationship between the orbital period of a
planet’s revolution and its distance from the Sun. But Newton’s formulation introduces the additional factor of
the masses of the Sun (M1) and the planet (M2), both expressed in units of the Sun’s mass. Newton’s universal
law of gravitation can be used to show mathematically that this relationship is actually

a3 = ⎛
⎝M1 + M2

⎞
⎠ × P2

where a is the semimajor axis and P is the orbital period.

How did Kepler miss this factor? In units of the Sun’s mass, the mass of the Sun is 1, and in units of the Sun’s
mass, the mass of a typical planet is a negligibly small factor. This means that the sum of the Sun’s mass and
a planet’s mass, (M1 + M2), is very, very close to 1. This makes Newton’s formula appear almost the same as
Kepler’s; the tiny mass of the planets compared to the Sun is the reason that Kepler did not realize that both
masses had to be included in the calculation. There are many situations in astronomy, however, in which we do
need to include the two mass terms—for example, when two stars or two galaxies orbit each other.

Including the mass term allows us to use this formula in a new way. If we can measure the motions (distances
and orbital periods) of objects acting under their mutual gravity, then the formula will permit us to deduce their
masses. For example, we can calculate the mass of the Sun by using the distances and orbital periods of the
planets, or the mass of Jupiter by noting the motions of its moons.

Indeed, Newton’s reformulation of Kepler’s third law is one of the most powerful concepts in astronomy. Our
ability to deduce the masses of objects from their motions is key to understanding the nature and evolution of
many astronomical bodies. We will use this law repeatedly throughout this text in calculations that range from
the orbits of comets to the interactions of galaxies.

E X A M P L E  3 . 4

Calculating the Effects of Gravity

A planet like Earth is found orbiting its star at a distance of 1 AU in 0.71 Earth-year. Can you use Newton’s
version of Kepler’s third law to find the mass of the star? (Remember that compared to the mass of a
star, the mass of an earthlike planet can be considered negligible.)

Solution

In the formula a3 = (M1 + M2) × P2, the factor M1 + M2 would now be approximately equal to M1 (the mass
of the star), since the planet’s mass is so small by comparison. Then the formula becomes a3 = M1 × P2,
and we can solve for M1:

M1 = a3

P2

Since a = 1, a3 = 1, so

M1 = 1
P2 = 1

0.712 = 1
0.5 = 2

So the mass of the star is twice the mass of our Sun. (Remember that this way of expressing the law has
units in terms of Earth and the Sun, so masses are expressed in units of the mass of our Sun.)
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3.4 ORBITS IN THE SOLAR SYSTEM

Learning Objectives

By the end of this section, you will be able to:

Compare the orbital characteristics of the planets in the solar system
Compare the orbital characteristics of asteroids and comets in the solar system

Recall that the path of an object under the influence of gravity through space is called its orbit, whether that
object is a spacecraft, planet, star, or galaxy. An orbit, once determined, allows the future positions of the object
to be calculated.

Two points in any orbit in our solar system have been given special names. The place where the planet is closest
to the Sun (helios in Greek) and moves the fastest is called the perihelion of its orbit, and the place where it
is farthest away and moves the most slowly is the aphelion. For the Moon or a satellite orbiting Earth (gee in
Greek), the corresponding terms are perigee and apogee. (In this book, we use the word moon for a natural
object that goes around a planet and the word satellite to mean a human-made object that revolves around a
planet.)

Orbits of the Planets
Today, Newton’s work enables us to calculate and predict the orbits of the planets with marvelous precision. We
know eight planets, beginning with Mercury closest to the Sun and extending outward to Neptune. The average
orbital data for the planets are summarized in Table 3.2. (Ceres is the largest of the asteroids, now considered a
dwarf planet.)

According to Kepler’s laws, Mercury must have the shortest orbital period (88 Earth-days); thus, it has the
highest orbital speed, averaging 48 kilometers per second. At the opposite extreme, Neptune has a period of

Check Your Learning

Suppose a star with twice the mass of our Sun had an earthlike planet that took 4 years to orbit the star.
At what distance (semimajor axis) would this planet orbit its star?

Answer:

Again, we can neglect the mass of the planet. So M1 = 2 and P = 4 years. The formula is a3 = M1 × P2, so a3

= 2 × 42 = 2 × 16 = 32. So a is the cube root of 32. To find this, you can just ask Google, “What is the cube
root of 32?” and get the answer 3.2 AU.

L I N K  T O  L E A R N I N G

You might like to try a simulation (https://openstaxcollege.org/l/30phetsimsunear) that lets you
move the Sun, Earth, Moon, and space station to see the effects of changing their distances on their
gravitational forces and orbital paths. You can even turn off gravity and see what happens.

Chapter 3 Orbits and Gravity 85

https://openstaxcollege.org/l/30phetsimsunear

	Chapter 3. Orbits and Gravity
	3.3. Newton’s Universal Law of Gravitation*


